Quantum Fourier Transform over Galois Rings 1

نویسنده

  • Yong Zhang
چکیده

Galois rings are regarded as “building blocks” of a finite commutative ring with identity. There have been many papers on classical error correction codes over Galois rings published. As an important warm-up before exploring quantum algorithms and quantum error correction codes over Galois rings, we study the quantum Fourier transform (QFT) over Galois rings and prove it can be efficiently preformed on a quantum computer. The properties of the QFT over Galois rings lead to the quantum algorithm for hidden linear structures over Galois rings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abelian codes over Galois rings closed under certain permutations

We study -length Abelian codes over Galois rings with characteristic , where and are relatively prime, having the additional structure of being closed under the following two permutations: i) permutation effected by multiplying the coordinates with a unit in the appropriate mixed-radix representation of the coordinate positions and ii) shifting the coordinates by positions. A code is -quasi-cyc...

متن کامل

Constacyclic Codes and Cocycles

Constacyclic codes may naturally be viewed as objects arising from the cohomological concept of a cocycle. Cohomology theory suggests a transformation which is used to show, under certain circumstances, a cyclic code of length mn over a ring R is isomorphic to the direct sum of m constacyclic codes of length n. In particular this isomorphism holds in many local rings (for example Galois rings) ...

متن کامل

Quantum phase uncertainty in mutually unbiased measurements and Gauss sums

Mutually unbiased bases (MUBs), which are such that the inner product between two vectors in different orthogonal bases is constant equal to the inverse 1/ √ d, with d the dimension of the finite Hilbert space, are becoming more and more studied for applications such as quantum tomography and cryptography, and in relation to entangled states and to the Heisenberg-Weil group of quantum optics. C...

متن کامل

A Survey of Finite Algebraic Geometrical Structures Underlying Mutually Unbiased Quantum Measurements

The basic methods of constructing the sets of mutually unbiased bases in the Hilbert space of an arbitrary finite dimension are reviewed and an emerging link between them is outlined. It is shown that these methods employ a wide range of important mathematical concepts like, e.g., Fourier transforms, Galois fields and rings, finite and related projective geometries, and entanglement, to mention...

متن کامل

A general construction of Reed-Solomon codes based on generalized discrete Fourier transform

In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes  enjoy nice algebraic properties just as the classic one.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009